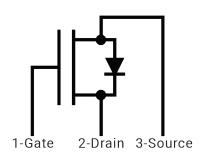
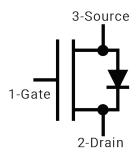


TO-247-3

SiC Power MOSFETs

Cactus Materials Power MOSFETs exceed power, efficiency and portability capabilities of standard silicon devices and are available in a variety of breakdown voltages (650V, 1200V, 1700V & 3300V) and current ratings. They have low on-resistance and low leakage in the blocking state. Fabricated on high-quality SiC epitaxial layers, our proprietary fabrication process includes carefully chosen annealing procedures to ensure a high-quality SiC-SiO $_2$ gate oxide dielectric layer. Doping profile neck region and edge termination ensure extremely low $R_{_{\rm ON}}$ and high breakdown voltage.


BENEFITS


- ✓ Higher efficiency
- Reduced cooling
- Increased power
- √ Reduced system volume

APPLICATIONS INCLUDE

Electromechanical power converters, DC to DC, AC to DC and DC to AC converters, switching power supplies, electric vehicles, hybrid vehicles, solar and wind energy power converters.

Part Number	Package	Marking
CM-131-SCMB-120C	T0-247-3	Cactus Materials

Maximum Ratings						
*Characteristics	Symbol	Comments	Min	Тур	Max	Units
DC blocking voltage	V _{DSmax}	T _J =25°C		1200		V
Gate input voltage range	$V_{\rm GS}$	Recommended range Dynamic	-5 -5		15 18	V
Avalanche rating	V_{AVA}	T _J =25°C	1200	1500		V
Pulsed drain current	ID _{pulsed}	V_{GS} =15V; T_{J} =25°C V_{GS} =15V; T_{J} =175°C		13 11.5		Α
Continuous drain current	ID	V_{GS} =15V; T_{J} =25°C V_{GS} =15V; T_{J} =175°C		10 8.5		А
Continuous drain power	Р	V_{GS} =15V; T_J =25°C		100		W
Maximum- junction temperature	T_{jmax}	Normal operation During processing / soldering			175 250	°C

Electrical and Thermal Characteristics						
*Characteristics	Symbol	Comments	Min	Тур	Max	Units
Gate threshold voltage	V_{TH}	$V_{GS} = V_{DS}; I_{DS} = 5mA; T_J = 25^{\circ}C$ $V_{GS} = V_{DS}; I_{DS} = 5mA; T_J = 175^{\circ}C$		3.2 2.2		V
Gate leakage	I _{GSS}	V_{GS} =15V; V_{DS} =0; T_{J} =25°C V_{GS} =15V; V_{DS} =0; T_{J} =175°C		16 600		pA
Drain leakage	I _{DSS}	$V_{DS}^{}=1.2kV; V_{GS}^{}=0; T_{J}^{}=25^{\circ}C$ $V_{DS}^{}=1.2kV; V_{GS}^{}=0; T_{J}^{}=175^{\circ}C$		10 200		nA
Drain-source on-resistance	R _{DSON}	V _{GS} =15V; I _{DS} =8A; T _J =25°C V _{GS} =15V; I _{DS} =8A; T _J =175°C		131 168		mΩ
Transconductance	G_{m}	V_{DS} =10V; I_{DS} =10A; T_{J} =25°C V_{DS} =10V; I_{DS} =10A; T_{J} =175°C		4.3 4.5		S
Input capacitance	C_{ISS}			1807		
Output capacitance	C _{oss}	V _{GS} =0V; V _{DS} =200V;		123		pF
Reverse transfer capacitance	C _{RSS}	f=1MHz; T _J =25°C		18		
Stored energy at output	E _{oss}	V_{DS} =200V; f=1MHz; T_{J} =25°C		5		μJ
Turn on switching energy	E _{on}	$V_{GS}^{-5/15V}; V_{DS}^{-200V};$ f=1MHz; T _J =25°C		37		μJ
Turn off switching energy	E _{OFF}	V _{GS} =-5/15V; V _{DS} =200V; f=1MHz; T _J =25°C		6		μJ
Rise time	t _R	V _{GS} =-5/15V; V _{DS} =1kV; ID=10A; RG=0Ω; T _J =25°C		20		nS
Fall time	t _F	V_{GS} =-5/15V; V_{DS} =1kV; ID=10A; RG=0 Ω ; T_{J} =25°C		15		nS
Turn off delay time	t _D	V_{GS} =-5/15V; V_{DS} =1kV; ID=10A; RG=0 Ω ; T_{J} =25°C		40		nS
Gate Charge	Q_{G}	V_{GS} =-5/15V; V_{DS} =1kV; ID=10A; RG=0 Ω ; T_{J} =25°C		40		nS
Internal gate resistance	R_{G}	f=1Mz; V _{AC} =25mV; T _J =25°C		5		Ω
Thermal resistance: Junction to Case	R_{JC}			1.5		°C/W

Body diode characteristics						
*Characteristics	Symbol	Comments	Min	Тур	Max	Units
Diode forward voltage	V _F	$I_F=3A; V_{GS}=0V; T_J=25^{\circ}C$ $I_F=3A; V_{GS}=0V; T_J=175^{\circ}C$		3 2.6		V
Pulsed diode current	I _{s(pulsed)}	$V_{GS}=0V; V_{DS}=-3V; T_J=25$ °C $V_{GS}=0V; V_{DS}=-3V; T_J=175$ °C		3 5.5		А
Reverse recovery time	t _{rr}					ns
Reverse recovery charge	Q_{rr}	V_{DS} =0-200V; V_{GS} =0V; T_{J} =25°C		34		nC

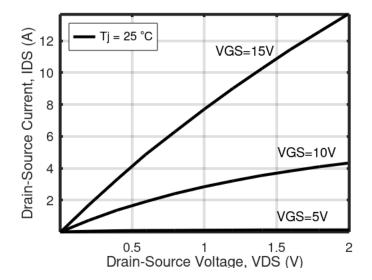


Figure 1: Output Characteristics TJ = 25°C

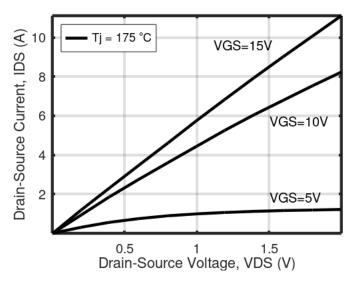
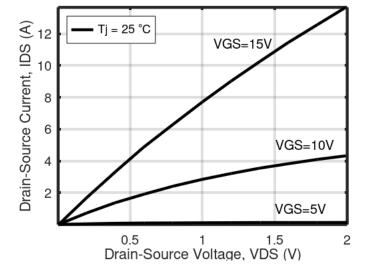
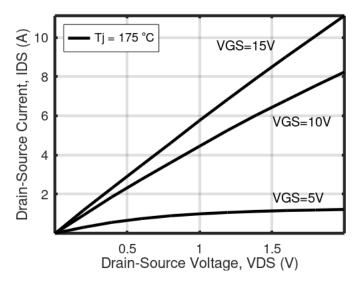




Figure 2: Output Characteristics TJ = 175°C

Figure 3: On-Resistance vs. Drain Current For Various Temperatures

Figure 4: Drain Current vs. Threshold Voltage. For Various Temperatures

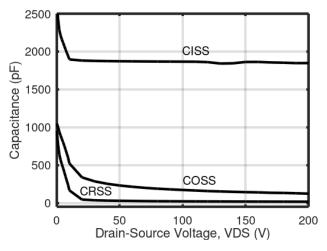


Figure 5: Capacitances vs. Drain-Source Voltage (0 - 200V); VGS = 0V

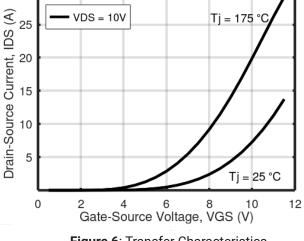


Figure 6: Transfer Characteristics For Two Temperatures

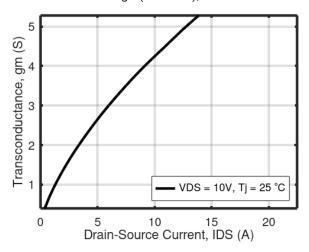


Figure 7: Transconductance vs. Drain **Current For Room Temperature**

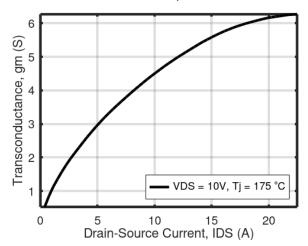


Figure 8: Transconductance vs. Drain Current for High Temperature

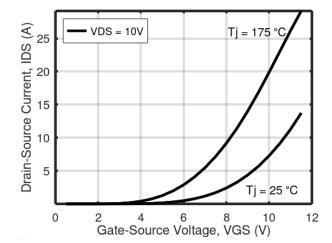
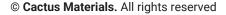



Figure 9: Body Diode Characteristic For Various Temperatures

CAUTION: These devices are ESD sensitive. User proper handling procedures.

Disclaimer: The specifications provided are not a guarantee of component performance. It is essential to test components for their specific applications, as modifications may be required. Use of Cactus Materials components in life support systems and devices necessitates prior written approval from Cactus Materials.

